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We developed a 3D elastic boundary element method computer code, called AstroSeis,
to model seismic wavefields in a body with an arbitrary shape, such as an asteroid.
Besides the AstroSeis can handle arbitrary surface topography, it can deal with a liquid
core in an asteroid model. Both the solid and liquid domains are homogenous in our
current code. For seismic sources, we can use single forces or moment tensors. The
AstroSeis is implemented in the frequency domain, and the frequency-dependent Q
can be readily incorporated. The code is in MATLAB (see Data and Resources), and it
is straightforward to set up the model to run the code. The frequency-domain calcula-
tion is advantageous to study the long-term elastic response of a celestial body due to a
cyclic force, such as the tidal force, with no numerical dispersion issue suffered by many
other methods requiring volume meshing. Our AstroSeis has been benchmarked with
other methods such as normal-mode summation and the direct solution method. This
open-source AstroSeis will be a useful tool to study the interior and surface processes of
asteroids.

Introduction
Asteroids and meteorites provide clues to understand the for-
mation of planetesimals in the solar system. However, the
internal elastic structure of asteroids is poorly constrained
(Johansen et al., 2015; Walsh, 2018). Seismology is very useful
in imaging the interior of a solid body (Asphaug, 2020).
Murdoch et al. (2017) showed passive seismic on the
asteroid—Didymoon—could be used to distinguish different
proposed internal models. The normal-mode analysis of rub-
ble-pile asteroids could reveal information about their internal
structure (Chujo et al., 2019). On the other hand, many astro-
nomical and planetary processes are related to seismic waves
or shaking. For example, seismic shaking can reshape an aste-
roid surface, because they can exert large stresses exceeding
the low gravity (Asphaug et al., 1996). The excitation of the
asteroid normal modes could change the topography of the
asteroid (Quillen et al., 2019). Recently, Tian and Zheng
(2019) proposed a tidal-seismic resonance effect in which seis-
mic waves in a planet excited by an orbiting moon’s tidal force
can, in turn, influence the moon’s orbit. Seismology can be
used to analyze the asteroid Bennu’s OSIRIS-REx images
(DellaGiustina et al., 2019) and lidar for clues in features like
run-outs, slopes, particle sorting to infer internal compositions,
and physical properties. The potential seismology data on the

asteroids can be obtained by orbital laser vibrometer seismol-
ogy (Sava and Asphaug, 2019; Courville and Sava, 2020). We
can also use seismology to examine the resurfacing event
caused by the impact on the Ryugu asteroid (Arakawa et al.,
2020). Clearly, the ability to model seismic wavefield in irregu-
lar bodies is useful in understanding both the interior and sur-
face processes of celestial bodies.

To model seismic waves in an asteroid, we need to address
two issues. First, we must be able to consider surface topogra-
phy, because asteroids are irregular in geometry and topography
can influence seismic waves significantly. Second, some seismic
sources are periodic and long in duration such as the tidal force,
because such ability to model in the frequency domain and to
incorporate a frequency-dependent Q is also desired. For these
reasons, we developed a 3D frequency-domain elastic boundary
element method (BEM). In addition, our BEM can also include a
liquid core for a geologically differentiated body.

There are many widely used numerical methods to model
seismic wavefields in Earth or other celestial bodies. For a
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1D spherical model, we can use the normal-mode method
(Ben-Menahem and Singh, 1981; Dahlen and Tromp, 1998;
Aki and Richards, 2002). This method is the exact solution
to model seismic wavefield. The package, MINEOS (Masters
et al., 2011), is a publicly available software for normal-mode
synthetic seismograms. However, its ability to model waves
higher than 166 mHz is limited for the Earth. The direct sol-
ution method (DSM) (Cummins, Geller, Hatori, et al., 1994;
Cummins, Geller, and Takeuchi, 1994; Geller and Takeuchi,
1995; Takeuchi et al., 1996; Kawai et al., 2006) is also a 1D
model-based code, which can compute high frequencies such
as >1 Hz. In principle, DSM can also handle irregular topog-
raphies (Geller and Ohminato, 1994). However, the code
released by Takeuchi (Kawai et al., 2006) can only handle
1D spherical models. Other numerical methods to model seis-
mic wavefields in a more complex model includes the finite-
difference method (FDM; Boore, 1972; Fang et al., 2014; Zhan
et al., 2014). FDM is known to have difficulties in modeling
wave scattering by irregular topographies. Recent progress by
Zhang et al. (2012) added the topography-modeling capabilities
at local scales; however, its application in global scales remains
to be demonstrated. The spectral element method (SEM;
Komatitsch and Tromp, 1999) is a powerful numerical method
in modeling waves in 3D Earth. However, its domain meshing
will need specialized software and training. Both FDM and SEM
are implemented in the space–time domain by discretizing
3D space into small grids and time into small marching steps.
A frequency-dependent Q is not straightforward to be incorpo-
rated in FDM and SEM. The grid dispersion can be another
issue, if the modeled seismic field is long in time duration

(e.g., due to cyclic tidal forces).
To avoid the grid dispersion in
FDM and SEM, usually very
fine grids and accordingly a
small time step should be used,
and it leads to expensive com-
puting. On the other hand, if
the source location is changed,
we need to compute the wave-
field again for FDM and FEM.
However, it is not true for
BEM, as it can simultaneously
handle multiple sources with-
out much added computation.
There is no “best” modeling
method universally. Each mod-
eling method, under certain
circumstances, can be more or
less advantageous than others,
depending on the objectives.

Our BEM is based on the
boundary integral equation
(BIE; e.g., Sánchez-Sesma and

Campillo, 1991; Ge et al., 2005; Ge and Chen, 2008; Zheng
et al., 2016). BEM only discretizes the model on the boundaries
and interfaces, which represents a dimension reduction by one.
Therefore, BEM can be less computationally intensive than the
other 3D numerical seismic modeling method (Stamos and
Beskos, 1996; Chaillat et al., 2009). Here, we present our
BEM method and the associated code to model seismic wave-
field in asteroids and small bodies in space. Our BEM is easy to
set up and use, and coded in MATLAB.

Method and BIEs
A solid asteroid with topography
First, we show how to use BEM to model seismic wavefield in a
solid asteroid. We assume the asteroid is a homogenous solid
body with an irregular boundary. In BEM, we only need to
know the wavefield on the boundary, and we can then compute
the wavefield in the entire model.

The BIE governs the surface seismic displacement field,
u for an interior domain Ω (Fig. 1a), reads

EQ-TARGET;temp:intralink-;df1;308;197

χ�x�un�x� � u0n�x� �
ZZ

�Gni�x′; x;ω�ti�x′�

− ui�x′�Cijkl�x′�Gnk;l�x′; x;ω�nj�dx′2; �1�

in which S is the surface of the elastic body including
topography. χ�x� � 1 if x ∈Ω and χ�x� � 1

2 if x ∈ S.
The surface integral should be understood in the sense of the
Cauchy principal value, if x is on the boundary. In BEM, x′ and
x are points on S; nj is the outward surface normal at x′;
Cijkl�x′� is the elastic tensor at x′. Here, we assume the medium

(a) (b)

Figure 1. Geometry used in boundary element method (BEM). (a) A solid asteroid. The domain in
gray is the solid medium Ω. S is the surface of this domain. We partition the surface into M small
triangles. ΣI and ΣI′ are boundary elements on S with indices I and I0, respectively. xI is the
collocation point on the element ΣI, which is defined as the center of the inscribed circle on ΣI.
x0 is the location of the source. n is the surface normal on S. (b) A solid body with a liquid core
schematic. Ω1 is representing the solid medium, which is the space in gray. Ω2 is representing the
liquid medium, which is the space in blue. J and J′ are element indices on S2. The color version of
this figure is available only in the electronic edition.
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is isotropic, and that there are only two independent Lamé
parameters in Cijkl:Gnk�x′; x;ω� is the Green’s function, the
displacement wavefield along the kth direction recorded at x′

due to a single-force source at x with the force direction along
the nth direction. Gkn;l�x′; x;ω� is the spatial directional deri-
vative of the elastic Green’s function with respect to x′ along
the lth direction in the frequency domain. All subscripts (n, i,
j, k, l) in equation (1) take a value of 1, 2, or 3 to indicate the
component of the vector/tensor field. Because the surface trac-
tion, ti�x′�, is zero on the free surface, we can neglect it in
equation (1).

In equation (1), u0n is the incident field. For a single-force
source f , we can directly use Green’s function to calculate the
incident field:

EQ-TARGET;temp:intralink-;df2;53;561u0n�x� �
ZZZ

Ω
f i�x′�δ�x′ − x0�Gni�x; x′;ω�dx′3; �2�

in which Ω is the space enclosed by surface S, x is a point
on surface S, x′ is a point in Ω. f i�x′� is the single force
at x′ along the ith direction. x0 is the location of the source
within Ω (Fig. 1a).

If the source is a 3 × 3 moment tensor,Mij, the incident field
is calculated as follows:

EQ-TARGET;temp:intralink-;df3;53;431u0n�x� �
ZZZ

Ω
Mijδ�x′ − x0�Gni;j�x; x′;ω�dx′3: �3�

We can solve equation (1) for u�x� on the boundary, x ∈ S.
We partition the surface into small triangles. Each triangle
is called a boundary element. The Ith element is called ΣI

(Fig. 1a). We assume the seismic wavefield u�x� on each sur-
face element is constant. We can then discretize equation (1)
and get a system of linear equations:

EQ-TARGET;temp:intralink-;df4;53;302

�
1
2
I� T

�
�u� � �u0�; �4�

in which �u� is a column vector containing the three-
component surface displacements (i.e., the total field inclu-
ding the incident field and scattered fields) on all the elements.
I is an identity matrix. �u0� is a column vector containing
the incident field on all surface elements excited by a single
force or a moment tensor source calculated using equation (2)
or (3).

We define a matrix representing the pair-wise field interac-
tion between elements:

EQ-TARGET;temp:intralink-;df5;53;132T�I; I′� �
ZZ

ΣI′

�x′�Cijkl�x′�Gnk;l�x′; xI ;ω�njdx′2; �5�

in which I and I′ are boundary element indices on S. They are
also representing row index and column index of T matrix.

In the BEM method, we first obtain the surface displace-
ment �u� on each element by solving the linear algebraic
equation (4). The wavefield at any interior point can be calcu-
lated using equation (1) using χ�x� � 1 for any interior point x
in Ω.

It is worth noting that the matrix �12 I� T� in equation (4)
will be nearly singular at its eigenfrequencies. By incorporating
a small constant imaginary part for all the angular frequen-
cies (Bouchon et al., 1989), this issue can be mitigated.
Alternatively, we can use the hypersingular BEM (Zheng et al.,
2016) by explicitly considering the traction BEM.

Solid body with a liquid core
In this section, we show the BEM modeling for a solid body
with a liquid core (Fig. 1b). Because of the liquid core in the
solid body, we now have two boundaries, we refer to the outer
free surface as S1, and the interface between liquid and solid as
S2. Because we divide the surfaces into discrete triangles or
boundary elements, we define the Ith and I′th boundary
element on S1 as Σ

�1�
I and Σ�1�

I′
, respectively. We also define the

Jth and J ′th boundary element on S2 as Σ
�2�
J and Σ�2�

J ′
(Fig. 1b),

respectively.
For a seismic wavefield in a liquid medium, the Green’s

function is simply GP � eikαr=�4πr�, in which kα � ω=vp is
the wavenumber in the liquid, ω the angular frequency, and
r the source-receiver distance. We have the BIE in the liquid
medium:

EQ-TARGET;temp:intralink-;df6;320;392

χ�x�P�x� � P0�x�

−

ZZ
S2

�
∂GP�x′; x�
∂n�2��x′� P�x′� − GP�x′; x�

∂P�x′�
∂n�2��x′�

�
dx′2; �6�

in which χ�x� � 1 if x ∈Ω2 and χ�x� � 1
2 if x ∈ S2. P

is the total pressure field, and P0 is the incident pressure field
on the fluid boundary, S2. x′ is a point on S2. x can be either on
S2 or inside the domainΩ2. n�2��x′� is the outward surface nor-
mal at x′. We can discretize equation (6) using the following
matrices (see Fig. 1b for the meaning of the symbols):

EQ-TARGET;temp:intralink-;df7;320;244

A�J; J ′� �
ZZ

Σ�2�
J′

∂GP�x′; xJ�
∂n�2��x′� dx′2; x′ ∈ Σ�2�

J ′
;

B�J; J ′� �
ZZ

Σ�2�
J′

GP�x′; xJ�dx′2; x′ ∈ Σ�2�
J ′
: �7�

In the solid domain, we write the BIE as

EQ-TARGET;temp:intralink-;df8;320;145

χ�x�un�x� � u0n�x� �
ZZ

S1∪S2
�Gni�x′; x;ω�Ti�x′�

− ui�x′�Cijkl�x′�Gnk;l�x′; x;ω�nj�x′��dx′2; �8�

in which χ�x� � 1for  an  interior  point x ∈Ω1 and
χ�x� � 1

2 if x ∈ S1∪S2. In the BEM, both x and x′ are on
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S1∪S2. We can discretize the equation (7) using matrices
defined in the following (see Fig. 1b for symbols):

EQ-TARGET;temp:intralink-;df9;41;501

T�11��I; I′� �
ZZ

Σ�1�
I′

Cijkl�x′�Gkn;l�x′; xI;ω�n�1�j dx′2; x′ ∈ Σ�1�
I′
;

T�12��I; J ′� �
ZZ

Σ�2�
J′

Cijkl�x′�Gkn;l�x′; xI;ω��−n�2�j �dx′2; x′ ∈ Σ�2�
J ′
;

G�12��I; J ′� �
ZZ

Σ�2�
J′

Gin�x′; xI;ω�dx′2; x′ ∈ Σ�2�
J ′
;

T�21��J ; I′� �
ZZ

Σ�1�
I′

Cijkl�x′�Gkn;l�x′; xJ ;ω�n�1�j dx′2; x′ ∈ Σ�1�
I′
;

T�22��J ; J ′� �
ZZ

Σ�2�
J′

Cijkl�x′�Gkn;l�x′; xJ ;ω��−n�2�j �dx′2; x′ ∈ Σ�2�
J ′
;

G�22��J ; J ′� �
ZZ

Σ�2�
J′

Gin�x′; xJ ;ω�dx′2; x′ ∈ Σ�2�
J ′
: �9�

We can obtain the final form of discretized BIEs system for
solid–liquid core model, by combining BIE in both liquid
and solid medium:
EQ-TARGET;temp:intralink-;df10;308;365

1
2
�u�1�� � �u�1�0 � − T�11��u�1�� − T�12��u�2�� � G�12��t�2��;

1
2
�u�2�� � �u�2�0 � − T�21��u�1�� − T�22��u�2�� � G�22��u�2��;

1
2
�P� � �P0� − A�P� � B�q�; �10�

in which �u�1�� is a vector con-
taining the three-component
surface displacements for the
elements on S1. Similarly,
�u�2�� is a vector containing the
three-component surface dis-
placements for the elements
on S2, �t�2�� is the column trac-
tion vector on S2. �u�1�0 � and
�u�2�0 � are vectors containing
the incident field for the ele-
ments on S1 and S2, respec-
tively. �P� is a vector con-
taining the pressure field for
the elements on S1. �P0� is
a vector containing incident

Figure 2. A homogenous model with a single-force source. (a) The
source and receivers are on the equatorial plane. The solid body is
20 km in radius. We placed the source (indicated by a red star) at
depth of 10 km, 180° in longitude, and 0° in latitude. The direction of
the force is given by the yellow arrow. All the receivers are placed on
the equator, spaced at an interval of 5°. (b) 3D view of the boundary
mesh. The red star is the source location. The blue circle in themiddle
is the equator. The yellow line is the axis through the poles. The color
version of this figure is available only in the electronic edition.

Figure 3. Seismic displacement (vertical-component) waveform of the model in Figure 2 using two
different methods: BEM and normal-mode summation, for a single force source. (a) Wiggle-to-
wiggle comparison of seismic waveforms due to a single force source shown in Figure 1. (b) A
common source gather by BEM; (c) common source gather by the normal-mode summation
method. The color version of this figure is available only in the electronic edition.
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pressure field for the elements on S2. By including boundary
condition on the solid–liquid boundary:

EQ-TARGET;temp:intralink-;df11;53;483

∂P�x�
∂n�2��x� � ρω2u 2� ��x� · n�2��x�; x ∈ S2;

t 2� ��x� � P�x�n�2��x�; x ∈ S2; �11�

in which n�2��x� is the surface normal at x on S2, t�2� is the sur-
face traction in the solid region on S2. We can now solve equa-
tion (10) for u�1�, u�2�, and P�x�, which are the field values on the
boundaries. Finally, we can use equations (6) and (8) to calculate
the displacement wavefield at any interior point in Ω1 or Ω2.

For BEMmodeling mesh building, we first partition the sur-
face by creating an approximately uniform triangular tessella-
tion on a unit sphere by minimizing generalized electrostatic
potential energy of a system of charged particles using the code
by Semechko (2015). We can magnify or shrink the unit sphere

mesh to any size we need. We can also directly add the height
of the topography to the vertex of the mesh to achieve topo-
graphy on our model. To implement surface integration on
a boundary element (e.g., equations 7 and 9), we use quadra-
ture integration using a MATLAB program from Xiao and
Gimbutas (2010).

Benchmarking
Benchmark example 1:
Homogenous solid
sphere with a single
force source
First, we benchmark the seis-
mic wavefield due to a single
force source in a 3D homog-
enous elastic and spherical
solid. We set the compressional
wave velocity as vp � 6 km=s
and the shear-wave velocity
vs � 3 km=s. We set the
density as 3000 kg=m3. The
spherical body is 20 km in
radius without topography.
The single force source is given

Figure 4. An explosion source in a homogeneous model. (a) The
source and receivers are on the equatorial plane. The solid body is
20 km in radius. We placed the source indicated by a red star at
depth of 10 km, 180° in longitude, and 0° in latitude (on the
equator plane). All the receivers are also placed on the equator,
spaced at an interval of 5°. (b) 3D view of the boundary mesh.
The red star is the location of the source. The orange circle is the
equator. The red line is the axis through the poles. The color
version of this figure is available only in the electronic edition.

Figure 5. Seismic displacement fields (vertical component) for the model in Figure 4 computed by
BEM and the normal-mode summation for an explosion source. (a) Wiggle-to-wiggle comparison
of seismic waveforms due to an explosion source shown in Figure 4. (b) Common source gather
computed by BEM; (c) common source gather by the normal-mode summation method. The color
version of this figure is available only in the electronic edition.
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as f � �1; 1; 1�N . The location of the source is at depth of
10 km, 180° in longitude, and 0° in latitude (Fig. 2a).

We also included attenuation by applyingQ-values for the P
and S-wave numbers:

EQ-TARGET;temp:intralink-;df12;41;444kα �
ω

vp

�
1� i

2Qp

�
; kβ �

ω

vs

�
1� i

2Qs

�
; �12�

in which ω is the angular frequency. The S-wave attenua-
tion is given as Qs � 200, and the P-wave attenuation is given
as Qp � 2:5Qs. To avoid the wrap-around effect (Bouchon
et al., 1989), we add an imaginary part to the angular fre-
quency, ω → �ω� i

Tm
�, in which Tm is the duration of the

seismogram.
We generate a mesh for our BEM code for the spherical

elastic body with a radius of 20 km (Fig. 2b).
Using the AstroSeis code (see the Appendix for the usage of

our BEM codes), we can model the surface seismic displace-
ment. We compare the modeled seismogram of AstroSeis with
that of the normal-mode summation method for the single
force source. We find the root mean square (rms) error of
the waveform difference is only 0.88% (Fig. 3).

Benchmark example 2: Homogenous solid sphere
with explosion source
To test whether our method can work with an explosion
source, we used the same model as in Figure 2. We only change
the source to an explosion source (Fig. 4). The moment tensor

of the explosion source is given as M �
2
4 1 0 0
0 1 0
0 0 1

3
5N · m.

By comparing the BEM result with the normal-mode summa-
tion method, the rms error of the waveform difference is only
0.48% (Fig. 5).

Benchmark example 3: Solid sphere with a liquid
core
In the third example, we benchmarked our code for a liquid core
model (Fig. 6). The source is the same explosion source used in
example 2. The solid medium is the same as the model in exam-
ples 1 and 2. The liquid part has a compressional wave velocity
of 8 km=s, and density is 4000 kg=m3. We calculated seismic
wavefields using our BEM code and DSM. These results also
show a good agreement, and the rms error of the waveforms
difference between the two methods is 1.45% (Fig. 7).

Numerical Examples for Complex
Models
Here, we show several numerical examples that we can compute
with our codes. First, we show that our code can model seismic
wavefield for a body with a liquid core at an arbitrary location.

Second, we can model seismic wavefield in Phobos with its
real topography (Willner et al., 2014).

Shifted-core model
We can use our BEM code to model the seismic wavefields in
two models: a solid body with a liquid core (the centered-core
model) and a solid body with a shifted core. In the shifted-core

Figure 6. Solid sphere with a liquid core model with an explosion
source. (a) The source (red star) and receivers (orange triangles)
shown on the equatorial plane. The solid body is 20 km in radius.
The liquid core is 10 km in radius. We placed the source at depth
of 4 km, 180° in longitude, and 0° in latitude (on the equator
plane). All the receivers are on the equator, spaced at an interval
of 5°. (b) 3D view of the boundary mesh. The red star is the
location of the source. The orange circle is the equator. The red
line is the axis through the poles. The color version of this figure is
available only in the electronic edition.
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model, the core is shifted along the y direction by 2 km from
the center (Fig. 8a). We use AstroSeis to compute seismic dis-
placement (vertical-component) wavefields in these two models
(Fig. 8b). We can clearly see a lack of focusing for the
seismic field at the antipode caused by the shift of the core
(Fig. 8b,c)

Seismic modeling for
Phobos
In this example, we chose to
model seismic fields in Phobos,
the closer moon of Mars.
Phobos has a very irregular
topography (Fig. 9a). Next, we
compute the seismic displace-
ment wavefield of Phobos with
an explosion source at depth of
4 km on the Phobos’ equator
plane (Fig. 9). To see how topo-
graphy modifies the seismic
wavefield, we also compute
the seismic field for a homog-
enous spherical model of simi-
lar size. We can see that the
vertical-component seismic dis-
placement wavefield has been
changed by the topography
greatly.

Computational
Performance
AstroSeis is a frequency-
domain method, and the
main computational task in
AstroSeis is to assemble the
matrices by calculating the sur-
face integration (see equations 5
and 9) for each frequency.
The integration is done using
quadrature integration (Xiao
and Gimbutas, 2010).

To accelerate the perfor-
mance of the AstroSeis, we par-
allelize the code usingMATLAB
“parfor” command to parallelize
boundary element integration
and the vectorization of the
matrix operations. We use an
Intel i9-9880H processor with
eight cores on a Macbook to
do the computation.

For the Phobos model, we
mesh the Phobos surface into
2784 triangles. We take 25

quadrature points in each triangle to calculate the surface
integration. The computational time for one frequency takes
about 180 s. The total computation depends on the number
of the frequencies needed for the modeling. For the Phobos
case, the total time we want to model is T0 � 50 s, and the
maximuml frequency we want to model is fMax � 0:9 Hz,

Figure 7. Seismic displacement (vertical component) comparison between BEM and direct solution
method (DSM) for an explosion source. (a) Wiggle-to-wiggle comparison of seismic waveforms
(BEM vs. DSM). (b) Common source gather by BEM; (c) common source gather by DSM (Kawai
et al., 2006). The color version of this figure is available only in the electronic edition.

Figure 8. The seismic wavefield (vertical displacement) in a solid sphere with a shifted liquid
core. (a) The mesh of a solid sphere with a shifted liquid core to calculate seismic displacement
wavefield. The core is shifted along the y direction by 2 km. The explosion source is given as

M �
2
4 1 0 0
0 1 0
0 0 1

3
5N · m. The source location is indicted by a red star, at a depth of 4 km, 180° in

longitude, and 0° in latitude (on the equator plane). All the receivers are placed on the equator at
an interval of 5°. In this solid medium, we set the compressional wave velocity vp � 6 km=s and the
shear-wave velocity vs � 3 km=s, the density ρ � 3000 kg=m3; in the liquid medium, we set
compressional wave velocity vp � 8000 m=s, density ρ � 4000 kg=m3. (b) Common source gather
for the shifted-core model in panel (a); (c) common source gather from a solid sphere with a centered
liquid core (i.e., no shift). The color version of this figure is available only in the electronic edition.
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the number of frequency need to be computed is
nf � fMaxT0�45. Therefore, the total computation time for
the Phobos modeling is about 8100 s using a Macbook. For sur-
face meshing, the number of the triangles depends on the
maxium frequency in the modeling. Because the S-wave velocity
is Vs � 3 km=s in this model, the average size of the triangle
should be no larger than the minimal wavelength λMin � Vs

fMax
�

3333 m. Therefore, we choose to mesh the Phobos model into
2784 triangles, with the maxium triangle size being 3276 m.
We have tested the modeling result with various triangle sizes
and found the results tend to be stable, if we choose the grid size
smaller than the minimal wavelength λMin.

For the solid body with liquid core model, we mesh the sur-
face into 3136 triangles and the core interface into 1536 trian-
gles. We used 25 quadrature points for integration. The
computational time is about 600 s for each frequency. The total
calculation time is 27,000 s on the aforementioned Macbook.

Conclusions
We have presented the theory and developed a numerical
seismic modeling package, AstroSeis, based on our boundary
element method. It can handle complex arbitrary surface
topography, solid–liquid interfaces, frequency-dependent
seismic attenuation, and various source types such as a single
force or a moment tensor source. We have verified the validity
of our code with the analytical solution (normal-mode summa-
tion) for a homogenous solid model. We also benchmarked our
code against DSM for modeling seismic waves for a liquid
core model. We showed the capability of our code in modeling
seismic waves in Phobos. We expect our code to be a useful

tool in future seismic explora-
tion for asteroids and other
planets.

Data and Resources
The topography data of Phobos
come from Willner et al. (2014).
The program along with the docu-
mentation can be downloaded
from https://github.com/ytian159/
AstroSeis. The MATLAB is available
at www.mathworks.com/products/
matlab. All websites were last
accessed July 2020.
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Appendix
AstroSeis program usage
Computation. The program we coded is written in
MATLAB, the main script is called: “AstroSeis.” All the para-
meters are in the input file named: “BEM_para.” To run the
seismic modeling, we can just run “AstroSeis BEM_para” in
MATLAB (Fig. A1).

As an example (Phobos example), for single force source in
homogenous solid model, we can write the input file of this
example as the default input file:

The input file, “BEM_para”, has the following lines:

Line-1: phobos_model_20km.mat # mesh
file name
Line-2: 10993 300 1 # radius of reference
sphere, nmesh (number of patch∼4*nmesh),
topography fold
Line-3: my_mesh.mat # name of the mesh gener-
ated from above parameters
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Line-4: demo_out_put.mat #output wavefield
file name
Line-5: 3000 1000 1880 200 # vp, vs, rho:den-
sity, Q:attenuation factor
Line-6: 500 0.1 0.5 # nt:number of sampling
points, dt:time interval, f0:center fre-
quency
Line-7: moment 0 #type of source could be sin-
gle or moment, scale of the source
Line-8: 1 1 1 # fx: x component force, fy: y com-
ponent force, fz: z component force
Line-9: 1 0 0 1 0 1 # Mxx,Mxy,Mxz,Myy,Myz,Mzz
Line-10: 4e3 0 180 # source depth, latitude,
longitude

In the input file, all the comments are following after “#.”
Line 1: Mesh file name.
Line 2: Mesh parameters: Parameters generating a new

mesh, including the radius for the reference sphere, number
of the patches, and the fold of topography. The default topog-
raphy is coming from the Phobos data (Willner et al., 2014). If
we set the topography fold as “0,” the model will just be a
sphere.

Line 3: New mesh file name: File name for the newly gen-
erating mesh file.

Line 4: Output wavefield file name.
Line 5: Model parameters: The model parameters including

P-wave velocity (vp), S-wave velocity (vs), density (ρ), and
attenuation factor (Qs).

Line 6: Time parameters: Parameters like number of sam-
pling points (nt), time interval (dt), and center frequency (f 0).

Line 7: Source parameters: Type of the source and scale of
the source. The type of source could be “moment” or “single”
for moment tensor source and single force source.

Line 8: Single force para-
meters: Three component of
single force source, if source
type is “single.” The unit is
Newton (N).

Line 9: Moment tensor
parameters: Six component of
moment tensor source, if
source type is “moment.” The
unit is N · m.

Line 10: Source location
parameters: The location of the
source (depth, latitude, and
longitude).

The default values are for
the explosion source. For single
force source modeling, we can
just change type of source to
“single.”

For the seismic wavefield in a solid body with liquid core
(see the Benchmark Example 3: Solid Sphere with a Liquid
Core section in the article), we can use the MATLAB script
“AstroSeis_liquidcore” with the input file “BEM_para_lc”:

Line-1: mesh_20km_2_layer.mat # mesh
file name
Line-2: 20000 400 0 # radius of surface, nmesh
(number of patch∼4*nmesh), topography fold
Line-3: 10000 100 0 # radius of solid-liquid
boundary, nmesh, topography fold
Line-4: my_mesh_lc.mat # name of the mesh gen-
erated from above parameters
Line-5: demo_out_put_lc.mat #output data
file name
Line-6: 6000 3000 3000 200 # outer layer: vp,
vs, rho:density, Q:attenuation factor
Line-7: 8000 0 4000 200 # core: vp, vs, rho:
density, Q:attenuation factor
Line-8: 500 0.1 0.5 # nt:number of sampling
points, dt:time interval, f0:center frequency
Line-9: moment 0 #type of source could be sin-
gle or moment, scale of the source
Line-10: 1 1 1 # fx: x component force, fy: y
component force, fz: z component force
Line-11: 1 0 0 1 0 1 # Mxx,Mxy,Mxz,Myy,Myz,Mzz
Line-12: 4e3 0 180 # source depth, latitude,
longitude

In this input file, we kept the format as the same, it only
has two more lines for the additional layer of the mesh (line
3) and velocity model (line 7). We can run “AstroSeis_
liquidcore BEM_para_lc” in MATLAB to start
modeling (Fig. A1).

Figure A1. Flowchart of AstroSeis. The color version of this figure is available only in the electronic
edition.
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Visualization. Visualization is also embedded in this code.
The input file can be the same as the computation part. If the
computation is finished, we can simply run “AstroSeis_
plot BEM_para” to do the plotting of the homogenous
model (Fig. A1). For the liquid core model, the input file is

similar: “AstroSeis_liquidcore_plot BEM_para_lc.”
We should be able to see the result shortly.
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