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Tidal forces play an important role in the evolution of the planet-moon systems. The tidal force of a moon can
excite seismic waves in the planet it is orbiting. A tidal-seismic resonance is expected when a tidal force frequency
matches a free-oscillation frequency of the planet. Here we show that when the moon is close to the planet, the
tidal-seismic resonance can cause large-amplitude seismic waves, which can change the shape of the planet and in
turn, exert a negative torque on the moon causing it to fall rapidly toward the planet. We postulate that the tidal-
seismic resonance may be an important mechanism, which can accelerate the planet accretion process. On the
other hand, the tidal-seismic resonance effect can also be used to interrogate the planet’s interior by long term

Tidal-seismic resonance

tracking of the orbital change of the moon.

1. Introduction

Darwin (1898) first proposed the idea of a gravity-seismic coupled
resonance of a fluid planet to explain the Moon formation. He argued that
the violent vibration of the planet at resonance “... shook the planet to
Dieces, detaching huge fragments which ultimately were consolidated into the
Moon.” While Darwin’s idea of moon formation theory has been largely
discarded, very little work has been done to investigate possible conse-
quences of the tidal-seismic resonance for a planet-moon system, in
particular for a solid planet.

Tidal force frequencies are usually out of the range of planet free
oscillation (or normal mode) frequencies. Even the tidal force of the very
fast orbiting Phobos around Mars does not produce a significant effect on
the Martian free oscillation in the current orbital configuration
(Lognonné et al., 2000).

However, in some cases, tidal force frequencies can intrude into the
frequency range of the planet’s normal modes. For example, the tidal
force on a rapidly rotating planet can excite the normal modes of the
planet (Braviner and Ogilvie, 2014a, b; Barker et al., 2016). Interaction
between Saturn’s ring and Saturn can excite the acoustic free oscillation
of Saturn (Marley, 1991, 2014; Marley and Porco, 1993). Fuller (2014)
used the tidal force to detect the acoustic free oscillation frequencies by
observing density waves in the Saturn ring. Furthermore, Fuller et al.
(2016) also studied the resonance between tidal force and the acoustic
free oscillation of gas giants (e.g., Saturn and Jupiter) which could
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change the migration of the moons.
Our goal here is to do a theoretical and numerical analysis to inves-
tigate some first-order effects of tidal-seismic resonance for a solid planet.

2. Material and methods
2.1. Model setup

In our analysis, it is better to make some simplifications and ap-
proximations to focus on the tidal-seismic resonance effect. We consider
a planet-moon system as a binary rotating system in an inertial reference
frame. We assume the moon is a point mass and we do not consider
potential fragmentation of the moon at the Roche limit (Aggarwal and
Oberbeck, 1974; Asphaug and Benz, 1994; Black and Mittal, 2015). The
modeled planet does not spin with respect to the reference frame. We
assume that the moon’s orbit is circular along the planet’s equatorial
plane. The orbiting period of the moon can be computed using Kepler’s
laws. We compute the moon’s tidal force for every point inside the planet
by subtracting the centrifugal force from the gravitational attraction
force for the moon.

We consider two planetary models: model-1 with no topography, and
model-2 with topography. In model-1, the planet is a homogeneous,
elastic, and spherical solid with no topography. We set the compressional
wave velocity in the solid as v, = 3 km/s and the shear wave velocity v; =
1.2 km/s. We set the radius of the planet as 2000 km. We use the mass-
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radius relation (Chen and Kipping, 2017) to set the planet density as p =
2840 kg/m®. For this planet, the shear modulus is low in our model
which could represent an icy body known to have low shear modulus
(e.g., Nimmo et al., 2007) or a planet with a liquid core which can
effectively lower the entire shear modulus. The mass of the moon is taken
as, 10'° kg (as a reference, this is similar to the mass of an object like
Phobos), which is about 107 times of the mass of the planet. We also
consider the effect of Q, which captures the dissipation effect of the
planet. Previous researchers showed that Q could cause a tidal phase lag
and was important in calculating the orbital decay of the moon (Zharkov
and Gudkova, 1997; Bills et al., 2005; Nimmo and Faul, 2013; Zheng
et al., 2015). We also consider a second planetary model of the same
material (model-2), but with a randomly generated topography to study
how planet topography can also play a role in the tidal-seismic resonance.

2.2. Method

To see when the tidal-seismic resonance can occur, we can compute
the planet’s normal-mode frequencies (see Appendix-A) and tidal force
frequencies (Appendix-B). Because the moon orbits around the planet
periodically, the tidal force is periodic at any point in the planet. If the
orbital frequency is designated as g, we also expect to see higher-order
harmonics such as nwy where n = 2, 3, 4, .... The tidal-seismic resonance
occurs when a tidal force frequency is the same as a normal-mode fre-
quency (Fig. 1). The tidal force preferentially excites the fundamental
spheroidal normal mode, (S,, where n is the degree in the surface
spherical harmonic function.

The orbiting moon exerts a cyclic tidal force for every point in the
planet. Therefore, this tidal force can cause seismic displacement in the
planet, which leads to the deformation of the planet. The change of the
figure of the planet can alter the planet’s gravitational field to exert a net
torque on the moon. To compute this torque, we need to compute the
tidal force induced seismic wavefield. We used the boundary element
integral equation approach (Zheng et al., 2016) (also see Appendix C).
The advantage of this computational method is that it is directly imple-
mented in the frequency domain and can model long-term seismic field
evolution (i.e., can avoid numerical dispersion in many time-domain
methods) and can also handle planet topography. To focus on the
tidal-seismic resonance effect, we did not consider the effect of gravity on
the propagation of the seismic wave (Dahlen and Tromp, 1998) in our
calculation. Once we obtain the seismic wavefield, we can compute the
time-dependent torque on the moon and the orbital decay rate of the
moon (See Appendix D). As an important verification of our numerical
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approaches, we compare our numerical torque results against the
analytical torque calculation for model-1. We found that the two results
are in excellent agreement (See Appendix E, Figure A2).

3. Results
3.1. Tidal-seismic resonance at low orbits

At low orbits, it can be seen that the orbital decay rate overall is
increasing as the moon is approaching the planet and the tidal seismic
effect punctuates/accelerates this trend locally at several distinct orbital
radii (“peaks” in Fig. 2). The locations of the “peaks” correspond to
special orbital radii at which strong torque has been exerted on the
orbiting moon due to the tidal-seismic resonance. Because of their special
importance, we call these orbital radii r;, wheren = 2, 3.... At r;, the
planet ¢S, normal mode frequency is exactly n times of the moon’s orbital
frequency. In these cases, both the tidal force and the (S, mode have
degree-n spatial patterns within the planet. Therefore, it is a simulta-
neous coupling for both the temporary and spatial frequencies (i.e., de-
gree-n) at r,, which can cause a very strong excitation of seismic
displacement inside the planet (Fig. 2).

We then compute orbital decay rates for several different Q values
(see Appendix D for details). In general (i.e., no tidal-seismic resonance),
the decay rate is small if Q is large because the tidal phase lag propor-
tional to 1/Q is small (see Bills et al., 2005). However, at rn where the
tidal-seismic resonance happens, the opposite is true because a large Q
yields a large induced seismic displacement, which gives a large torque
causing a large decay rate (Fig. 2). Among all r,,’s, the r}, is special. Atr,
where the degree-2 normal mode (i.e., the gravest “football-shaped”
mode) is excited by the tidal force, the orbital decay rate is computed and
found to be on the order of ~1-10 cm/s for different Q values (Fig. 2) for
this particular planet/moon model (i.e., model-1) considered here. At the
tidal-seismic resonance orbit, the orbital decay rate is 2 orders of
magnitude more than that for a neighboring orbit that has no resonance.

We note that the exact numerical value for orbit decay may vary from
model to model. However, the tidal-seismic resonance can significantly
accelerate the orbital decay (“peaks” in Fig. 2 compared to the smooth
background trend). The greater the Q value is, the sharper the peaks are.
To verify whether these peaks are indeed caused by the tidal-seismic
resonance effect, we analytically calculated the normal mode (S, fre-
quencies of the planet (See Appendix A). We then calculated the corre-
sponding r,, whose orbital frequency is 1/n times of the ¢S, frequency. We

Fig. 1. Tidal force and planet normal mode fre-
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Fig. 2. Calculated moon orbital decay rates at different orbital radii and for different Q values for model-1. The horizontal axis is the radius of the moon orbit. The
radius of the planet Ry is 2 x 10°m. We also label the excited normal modes, S,, n > 2, expected to be seen for the tidal-seismic resonance.

found that the calculated r; based on the (S, frequency corresponds to
the “peaks” of the moon orbital decay rate (Fig. 2). In conclusion, the
rapid falling of the moon is caused by the tidally excited seismic normal
modes of the planet. When the moon’s orbit radius is large (e.g., >2.5 x
10°mor > 1 .25R;1), the tidal-seismic resonance effect is not pronounced.
In this case, a smaller Q value gives a larger orbital decay rate which is
consistent with the tidal drag due to the anelasticity effect (Bills et al.,
2005).

3.2. Topography induced tidal-seismic resonance

At higher orbits (orbital radius greater than 2.5 x 10®m or 1.25 Ry in
this case), the tidal seismic resonance can occur when mwy matches the
S, frequency, where both m and n are integers and typically m > n.

In principle, a degree-m tidal force field cannot excite degree-n
normal mode for a purely spherical and homogeneous planet (i.e., model-
1) because these two fields are orthogonal to each other in space. How-
ever, if the planet is not spherical (i.e., model-2), the tidal-seismic reso-
nance can still exist because topography could couple modes of different
spatial degrees. Our purpose here is to investigate the topography-
induced tidal-seismic effect.

For model-2, we generated the surface topography for the planet
using spherical harmonics up to and including order 6 (Fig. 3). Specif-
ically, the topography, h, is generated by the summation of spherical

6 1
harmonics, h(0, 9) = > . cmY7'(0, ), where h is the height of the
=0m=-1

topography from the reference sphere, 6 and ¢ are the angular positions
on the surface, and Y7" represents the fully normalized spherical har-
monics. We generate random numbers for the coefficients, c;, to
construct the topography for model-2. We use the same numerical pro-
cedure laid out in Section 3.1 to compute the seismic wavefield for
model-2, along with the torque on the moon and the orbital decay rate of
the moon. To see the topography effect on the tidal seismic resonance, we
take the derivative of the orbital decay rate with respect to the orbital
radius and several localized changes at some radii show up (Fig. 4a).
These changes are due to topography induced tidal-seismic resonance. To
validate this claim, we run our seismic wavefield modeling using our two
models (model-1 and model-2) and obtain histories of orbital decay rates
for both models. We then calculate the derivative of the orbital decay rate
with respect to the orbital radius for the two models (Fig. 4 a &b). We can
see localized changes for the topography model, model-2 (Fig. 4a). In
contrast, we see a smooth curve (no localized changes) for the orbital
decay rate derivative using model-1 with no topography (Fig. 4b). Hence,
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Fig. 3. A model with topography (model-2) for the planet. We have exaggerated
the plotting of the topography by 20 times. Colors indicate topography relative
to the mean radius of the planet with size given in meters. The thick red line is
the equator. The blue vertical thick line is the axis through the poles. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

topography can indeed induce tidal-seismic resonance at higher orbits.
4. Discussions

Tidal forces play an important role in the orbital evolution of the
Martian moon, Phobos (Black and Mittal, 2015; Hesselbrock and Minton,
2017) because Phobos is below the synchronous orbit. Phobos is spiraling
towards Mars due to the tidal torque. Will our proposed tidal-seismic
resonance effect play a role in this system? Presently, Phobos’ orbit
radius is about 2.77 times the Mars radius (Rm), which is too far to induce
a significant tidal-seismic resonance. However, when Phobos’ orbit de-
cays to about 1.97 x Rm, the topography induced tidal-seismic reso-
nance will occur, provided Phobos is strong enough and not fragmented
by Mars gravity field at the Roche limit. The strength of Phobos depends
on the internal friction angle of the material in Phobos. A Roche limit of
1.97 x Rm corresponds to an internal friction angle of 40° (Holsapple
and Michel, 2006). If the angle is larger than 40° (Holsapple and Michel,
2006) (i.e., a stronger Phobos), the tidal seismic resonance can occur
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Fig. 4. The derivative of the orbital decay rate with respect to the orbital radius for (a) model-2 with topography and (b) model-1 with no topography. Here, f, is the
frequency of the normal mode S,. A dashed line shows the orbit whose orbital frequency is f,/m, where n and m are integers and labeled accordingly next to the

dashed line. The radius of the planet Ry is 2 x 10°m.

before Phobos reaches the Roche limit. When Phobos’ orbit is at 1.97 x
Rm, we estimate the orbital decay rate to be about 10-1°m/ s based on
the present-day Martian topography using an approximate homogenous
Mars model (P-wave velocity v, =7.4km/s, S-wave velocity v = 3.6km/
s, density p = 4000kg/m® to match a (S, period of about 2300 s (Zheng
et al., 2015)). This rate is about 8% of the current orbital decay rate of
Phobos, which is approximately 1.28 x 10’9m/s (Bills et al., 2005). As
Phobos continues falling towards Mars, the effect of tidal-seismic reso-
nance will be more and more powerful in pulling Phobos towards Mars.
Because of the tidal-seismic resonance, we note that Phobos cannot stay
at low orbits for a long time even if it is below the Roche limit and not
fragmented.

5. Conclusions

The tidal-seismic resonance effect can be important in understanding
planet-moon evolution if the moon is below the synchronous orbit. The
tidal seismic resonance can result in a large negative torque on the
orbiting moon, which can increase the orbital decay rate of the moon
toward the planet it is orbiting by one order of magnitude. It is also
conceivable that the tidal-seismic resonance may also significantly
accelerate the planetary accretion and formation process. The tidal-
seismic phenomenon may also provide us with a potential method for
interrogating the structure and compositional information of a planet

without having to land an instrument on its surface. By precisely
measuring the orbital decay rate as a function of radii, we can infer the
normal mode frequencies of the planet, which can convey a wealth of
information about the planet’s interior.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pss.2019.104796.
The Mathematica script for computing the tidal Love number can be accessed freely at https://github.com/ytian159/Love-number.

Appendices.
A. Calculation of the normal-mode frequencies of a homogenous solid planet

A planet can resonate as a whole at certain discrete frequencies and spatial patterns. These vibrational modes are called seismic normal modes (p.
337, Aki and Richards, 2002). There are two types of modes: spheroidal modes associated with volumetric changes, and toroidal modes not associated
with volumetric changes. Thus, only spheroidal modes contribute to the tidal torque for a homogenous, spherical, solid planet.

By applying a free surface condition, we can analytically solve for the frequencies of spheroidal modes for a spherical and elastic uniform body (see p.
364, Ben-Menahem and Singh, 1981).

2(1 — I+ kyaSy,) 201 — 1) — (kea)’s> + 4keaSa]
[—2+22 — (kpa)* + ZkﬁaSﬁ] 2(1+ D[ = 1) = kpaSy] 7

(A.1)

where a is the planet radius, S, = ji;1(kea) /ji(ka@), Sp =ji11(ksa)/ji(kga), ji is the spherical Bessel function of the angular order [ (1=0,1,2 ...), k, and kg
are the P and S wavenumbers respectively, and 7 = kg /k,. The temporary frequencies are included in wavenumbers as, k, = %,k/; = {2 As an example,

we can solve equation (A.1) to get the frequencies of spheroidal modes (Fig. A1 with parameters, a = 2000km, v, = 3km/s, vy = 1.2km/ s.
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B. Calculation of the tidal force in the planet due to the orbiting moon

The tidal force of the orbiting moon is following Newton’s law of universal gravitation. We can obtain the formula of the tidal force acceleration, g, at

513 [Xm(t) - X,] + fd'("’? t)v (Bl)

where xp,(t) is the position of the moon at time t on a circular orbit with a constant angular speed, wy. G is the universal gravitational constant. my, is the
mass of the moon. f(x , t) is the centrifugal force at x’. We can use this formula to calculate the excitation of the seismic field for our seismic wavefield
modeling later (Appendix C).

Although the moon’s orbital frequency is wy, it can also generate other higher harmonic frequencies. To see this, we can analyze the first term in
(B.1) by looking at its gravitational potential (Taylor and Margot, 2010)

Gm,, =\ G, |x]"
\%4 == — P, |cos s B.2
= R T2 el ®2

where P, is n-th order Legendre polynomial, y(t) is the angle between vectors x and xn(t), and r;, is the radius of the moon’s circular orbit along the
planet’s equatorial plane. For a point x in the planet, the gravity potential is changing with time due to the term in the Legendre polynomial, P,[cosy (t)].
If the orbit frequency is wo, Py[cosy (t)] has the term cos(nwot), whose frequency is nwo (n = 0, 1, 2, ...). Therefore, the tidal force frequencies of the
moon are discrete and have higher order harmonics. We note that the centrifugal force can cancel the term n =1 of the gravitational potential V.
Therefore, n should start from 2, and the tidal potential is:

Viide (X, 1) i: G X" P, [cosy(1)] (B.3)

n+]
n=2 n
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In the examples in this paper, we truncate the angular order to n = 16 in equation (B.3) for our numerical simulation. We have tested that any higher
order tidal force term has no significant contribution in the sum (equation (B.3)); thus, we ignored the higher order polynomials. We consider the case
that the mass of the moon is much smaller than the planet; therefore, the center of the planet is almost the same as the center of mass of the two-body
system.

C. Modeling seismic wavefield in the planet with topography using the boundary element method (BEM)

We used the Boundary Element Method (BEM) (Zheng et al., 2016) to numerically model the seismic field of the planet excited by the tidal force,
which follows Eqn C.1:

—pVVie +V -0 = pii, (C.1

where ¢ is the elastic stress tensor, Vi, is the tidal potential from (B.3), u is the seismic displacement.

In our seismic modeling, the planet can have an arbitrary surface topography. The BEM method is a frequency domain method, which can reduce the
computational cost of this study. The BEM method computes the full seismic wavefield, including all possible normal mode coupling between spheroid
and toroidal modes. BEM first solves the wavefield on the planetary surface/boundary. Once the boundary field is known, we can compute the wavefield
at any point inside the planet using the representation theorem (p. 28, Aki and Richards, 2002). The boundary integral equation governs the seismic
field, u:

1
Euq(x,w) = 1o, (X, ) — /ui(x’)C,-jk,(x’)qu_,(x’,X.cu)njdx’z; X, X €S. (C.2)
s

In this equation, S is the surface of the planet including topography; n; is the outward surface normal along j-th direction; Cy(x’) is the elastic
constant matrix of the planet model at x’. Here, we assume the planet is isotropic, so there are only two independent Lame parameters in the matrix.
Grqi(X’, X, w) is the elastic Green’s function derivative with respect to x’ along the I-th direction in the frequency domain. All subscripts (gq, i, j, k, 1) in
equation (4) take a value of 1, 2, or 3 to indicate the component of the vector/tensor field. The medium Q factors for P and S waves is in the Green’s
function.

The incident field, up,(x, ), excited by the tidal force (see equation (B.1)) along the g-th direction in the frequency domain can be computed as:

g (%, 0) = / )8, )Gy (%, X, 0)dlx”, ©3)

where x and x’ are points in the planet. Gy (x,x’, ®) is the Green’s function in a homogeneous unbounded elastic medium. g;(x’, ®) is the tidal force of the
moon at x’ along the i-th direction in the frequency domain. The value of g;(x’, ) at each frequency is the Fourier coefficient of equation (B.2):

T
g(x’,w):%/ g(x’, 1)e™dt, (C.4
0

where T is the orbital period. The frequency o takes discrete values (nw,) as showed in equation (C.4), wheren = 1,2 3....
To solve equation (C.2), we partition the planet surface into small triangles. Each triangle is called a boundary element. We assume the seismic
wavefield u(x, ) on each surface element is constant. We can then discretize equation (C.2) and get a system of coupled linear equations:

(%1 +A> 1] = [uo), €5)

where A is a matrix representing wavefield interaction between the surface elements. Matrix A depends on the geometry of the surface and the medium
elastic properties; [u] is a vector containing the 3-component surface displacements on all the elements. I is an identity matrix. [uo] is a vector containing
the incident field on all surface elements, excited by the tidal force and calculated using equations (C.3) and (C.4). In the BEM method, we invert for the
surface displacement [u] on each element by solving the linear algebraic equation (C.5). Now, we have obtained seismic displacement u(x, @) on each
surface element. By the representation theorem (p.28, Aki and Richards, 2002), we can compute the displacement field at any point within the planet.

Because the tidal force is discrete in frequency, we only need to solve equation (C.5) at these discrete frequencies. Once we get u(x, ®) at frequency
nwy, we can use Fourier series to get the time-domain field, u(x,t):

N
u(x,t) = Z 2Re[u(x, naw )e"™'], (C.6)
n=1
where Re takes the real part of a complex number, N is the truncation angular order and we set N = 16. Because u(x, t) is linearly proportional to [u]
which is linearly proportional to the mass of the moon, u(x, t) is also proportional to the mass of the moon.
D. Calculation of the tidal-seismic torque and the orbital decay rate

Once we have obtained the seismic displacement, u(x,t), we can compute the time-t dependent torque on the moon due to the seismic wavefield in
the planet:
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X — Xp (1)

m [u(x, t) - e]dx?, (.1

M(1) = fpr,(t) x Gm,,

where, x, is the location of the orbiting moon; p is the density of the planet; and e, is the surface normal at x.
We can derive the orbital decay rate of the moon (Fy(t) = dri(t)/dt) by using the Newton’s second law:

2|W| rm(t)

D.2
My, Gl"’lpz7 (D.2)

|’;m(t)|:

where M(t) is the average torque on the moon in one orbital period, G is the universal gravitational constant, my, is the mass of the moon, and my, is the
mass of the planet.

We have shown that both g(x, t) and u(x, t) are proportional to the mass of the moon in Appendix B and Appendix C. In equation (D.2), the orbital
decay rate is divided by the mass of the moon my,. Thus, the orbital decay rate is proportional to the mass of the moon. If the mass of the moon changes,
the orbital decay rate will change accordingly.

E. Tidal Love number hy for a compressible planet

We used BEM to compute the tidal deformation and the seismic wavefield in the planet and the resultant tidal torque. The purpose of this appendix is
to show that our BEM (Appendix C) and the torque calculation (Appendix D) are correct by comparing the results to known analytical expressions under
the validity regime of such expressions.

Definition of the tidal Love number

The tidal Love number hy, is defined as a ratio of the radial displacement on the solid planet surface due to the moon’s degree-2 tidal potential and the
tidal height raised on a hypothetical fluid planet due to the same degree-2 tidal potential. Another tidal Love number is ky. Assuming the moon is
orbiting the planet on the planet’s equatorial plane, the tidal Love number is defined as, hy = u,/(Viige/|80(a)|, where u; is the radial displacement on the
equator caused by Vi which is the degree-2 tidal potential, and g, (a) is the gravitational acceleration on the planet surface. Both V;4, and gy (a) are
known. Computing h; is equivalent to computing u,.

Analytical solution for tidal u, under self-gravitation
The tidal force can deform the planet and the displacement can be obtained by solving the following Eqn E.1(e.g., Love, 1911) which do not have the
seismic wave induced particle acceleration term i:

—pVViie +V -6 —=V(pu-g,) +pVK+pg,V-u=0,

V2K —47GpV -u =0 (E.1)

where is the displacement within the planet caused by the tidal force. Here, Vi is the tidal potential of degree-2 that causes the deformation, o is the
elastic stress tensor, K is the gravitational potential caused by the density perturbation due to seismic waves, and g, is the vector gravitational ac-
celeration of the planet. The above equations are solved using zero-traction boundary condition on the planet surface. The terms involving g, and K are
due to the planet self-gravitation. These terms can be ignored if the tidal force frequency is high.

The tidal Love number, hy, for a homogeneous planet under degree-2 tidal potential can be found to be Eqn E.2(Love, 1911; Murray and Dermott,
1999),

5 192\
=-(1 , E.2
hy 2( +2/)g0a) (E.2)

where y is the shear modulus of the planet, p the density of the planet, g, is the planet’s gravity on its surface, and a is the planet’s radius. Using the
parameters in this paper, we obtain h, = 0.47, under the assumptions that 1) the planet is incompressible, i.e., u/1 — 0, where p and A are the two Lamé
constants (see Love, 1911, p109); and 2) the planet has self-gravitation. The tidal torque I" can be computed as (p.164 of Murray and Dermott, 1999)

9 Gm (a\’ . _
F:Ehz r,,m (7]’) sin(2e), 2e=Q7", (E.3)

where m is the mass of the moon, r, is the moon’s orbit radius, and Q is the shear quality factor.

Analytical solution for tidal u, without self-gravitational effect
However, in our paper we emphasized the effect of resonance. We ignored self-gravitation effect on the propagation of seismic waves. To get the new
h, value, we need to solve for the following equation

—pVViae +V -6 =0, (E.4)

with the traction-free boundary conditions on the planet surface. The forcing potential V. is degree-2.
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We then apply the definition of the tidal Love number and numerically solve equation (E.4) and obtain h = h* = 0.5877 for the model and orbital
parameters we considered in the main text. A computer script (Mathematica®) is provided to compute the tidal Love number hy. Our numerical torque
calculation, based on the boundary element modeling (equations C.6 and D.1), agrees well with the analytical calculation (E.2) based on h;, Fig. A2.
Discrepancies at low orbit heights are expected (Fig. A2), as the tidal potential is no longer degree-2. We also note that the torque is inversely pro-
portional to Q. As expected, we see a factor of 4 for the numerical torque values for two different Q values, Q = 50 and Q = 200, at the same orbital

radius.

6 T
107 analytical Q=50
—=—numerical Q=50
analytical Q=200
—=—numerical Q=200 B
= 108 ]
= -
°©
5
)
[¢]
F-10"
124 L L
-10
2 4 6 8 10

Orbital radius(x Rpl)

Fig. A2. Comparison of the analytical torque and numerical torque (based on our boundary element modeling, see equation (D.1)) for different orbital radii and Q
values. The analytical torque is computed using equation (E.3) with hy = 0.5877. Ry; is the planet’s radius.
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